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The equations of the gauge theory of gravitation [Debney et al., General 
Relativity and Gravitation, 9, 879-887 (1978)] are derived from a complex 
quadratic Lagrangian with torsion. The derivation is performed in a coordinate 
basis in a completely covariant way. 

The purpose of this note is to briefly describe how the field equations 
of the gauge theory of gravitation (see, e.g., Debney et al., 1978) can be 
derived in a conceptually much simpler way from a quadratic Lagrangian 
with torsion. The present derivation requires only knowledge of standard 
tensor algebra and analysis; no familiarity with the gauge theory of gravita- 
tion is needed at all. The derivation also has the merit that it is generally 
covariant and can be performed in a coordinate (holonomic) basis, and that 
the equations are all derived from a Lagrangian, which is complex, however. 

The equations as given by Debney et al. (1978) are 

~Qkt + CkmtnQ mn = 0 [their equation (1.1)] (1) 

*CkmtnQ "n = 0 [their equation (1.3)] (2) 

*C,,n rs; p g ' P  = 0 [their equation (1.4)] (3) 

The contraction of (1) yields Q = 0. As we derive the equations from a 
purely quadratic Lagrangian, it follows that ~ = 0, and so our equations are 
more general in that they allow Q :~ 0. 

We start with the Lagrangian density 

"x I / 2  r ,•txv uv 
L =  ~ ( -  g)  ux. vuo~" (4) 
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Here, 

Uxy,,~, = Wxy ,,,, + M.y  ,,,, (5) 

W~.,,.v is a sort of a counterpart of the Weyl tensor in a manifold with 
torsion; it has the same symmetries 

W~y .o = W,,o ~.,,= - Wy~ . .  = - Wxy ~ (6) 

w,t..o~=0 (7) 

It is related to the (2, 0)+ (0, 2) representation of the Lorentz group [compare 
Hayashi 1968, equation (3.24) or Hayashi and Bregman 1973, Appendix 
IIb]; it is expressed as 

W..y,,v= 2Dxy,,v + 2D,,v~y + D,~.,-y,, + D~ . . . .  - D,,y.,.,,- Dx,,,,y (8) 

where 

Dxy .o= R~y.v  + ~ R ( g . . . g v v -  g..~g,,.) 

- � 8 9  ) (9) 

Thus 

Dxy~vgY" = O, W~.,,..g .'~ = 0 (10) 

Here, Rxy ~ is the Riemann tensor, which is the sum of the curvature 
tensor Qxy.v and the distortion tensor Pxy ~v (compare Gogala, 1980), which 
are defined as 

^ A m ^ 

Qx~.,o rxyo/ .  - f'~,,./o + r .wr,.xo - ^ " ^  �9 = F y~Fmx u (in a coordinate basis) 

(11) 

Pxyuv = Svxy;.  - S~xy;. + ( S . xmS.y  . - S . . vmS.~ . )g  m~ (12) 

Here, S.xy denotes the contortion tensor, antisymmetric in the last two 

indices, I'xw is the Levi-Civith connection, and " ;"  denotes the covariant 
derivative With respect to it. 
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Similarly to (8) and (9), we define 

Mx,,uv= 2E~,.y,,, + 2E . . . .  ,, + E,,~,y,, + Ev,,,,x- Eoyx~,- E.,~uoy (13) 

where 

Exyuv = *Rxyuo + ~ *R(gxugyo - gxogy,) 

I , . _ *  m *  -~ (~vog~ .+*Rx~g  w ~Ry~g~. :Rxogv, ) (14) 

The asterisk denotes the dual tensor; we have 

I~ k m  In *R.~yuo ,",kluv'flmnxyg g (15) 

with *R~u and *R being its contractions over y and v, and x and u, y and v, 
respectively. 

Note that 

*Dxy~,,~=E~y,,~,, *W~y~,~*M~y.~ (16) 

We use the imaginary Levi-Civit~t tensor, defined as 

~klm,= l(. .  F xl/2 g) Ekhnn, 
1 ~klmn =1 _ _ . E k l m n  (17) 

(+ g)t/2 

so that the double dual of a tensor is equal to the original tensor itself, 
without any change of the sign. 

The Lagrangian (4) is thus complex. It has an interesting property that 
the contortion tensor appears in it only in the self-dual combination 

Sjk I -F Sj mn'~mnk I (18) 

As ~/,,,,,k/is imaginary, this combination recalls somewhat the (1,0) represen- 
tation of the Lorentz group. 

As the basic variables, with respect to which we perform the Hamilto- 
nian differentiation, we take only tensor quantities; in our case, they are the 
components of the metric and the contortion tensors. 
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The  Hami l ton i an  derivative of  (4) with respect  to gab is~ 

Gab = - + w .  + 

-- 2U~a.b; ~;x --2Ugh=.; .;~ + Ux~oQxb.~ + Uxb.oQ~.o 

+2Uxyuo(Soj,,,S,,~ b + SoybS,,,,,,)+2[(V~,,,b + U,,b,,,~) S,,.,,=] ; ~: 

+ 2[ Uxy,,b ( S . y .  + Sy,,,,)] : x + 2[Uxyua ( Suy b q- Syub)];x 

It  is of  course symmetr ic  in a and  b. 
Here  

(19) 

Xab = - *Rxyub( lxyua "Jr Ruaxy + Raxy u -t- Ryuax) 

- *Rxyua(Rxyub q- Rubxy q- Rbxy u q- Ryubx) 

+ 3  ( * R ~  + *R~)(  R ~ b  + R ~ b ~ ) + 3  *Rx~( R~b + Rb~ ) 

+ 3  *Rxb( Rxa + R a x ) - 2  *g(  gab + gb~ ) (20) 

Note  also, that  Wxyuv satisfies the condi t ions for the B a c h - L a n c z o s -  
Lovelocl~ identi ty (cf., e.g., Lovelock and  Rund,  1975, p. 128, exercise 4.9, 
and p. 293, exercise 7.37), so that  the first te rm in (19) is equal  to 

�89 (21) 

The  Hami l ton ian  derivative with respect  to S~ b~ is an t i symmetr ic  in b 
and c, and has the fo rm 

Aab c = 4(Ubc.z; z -- Uxb..S~x r + Uxr  (22) 

An  expansion into componen t s  shows that  its real and imaginary  par ts  are 
related by the propor t iona l i ty  relat ion 

de 
A(r)abc -- *h(i)abc = A(i)a rldebc (23) 

IIn the equations (19), (20), (22), (24), (26), (28)-(36), (38), and (39), we write all the 
contravariant indices as covariant indices in order to enhance the lucidity of the equations and 
to simplify the printing. The interpretation is simple; if a covariant index appears twice, that 
means that one of the two indices is a contravariant index. We can afford to do that because 
all the quantities involved are either tensors or (metric-preserving) covariant derivatives of 
tensors. 
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Thus, (22) yields only 24 independent field equations of the form 

a(,)ab, = 4(Wbca,;z - W,,b,,aSux ~ + Wxr xb) = 0 (24) 

When the contortion tensor is identically zero, then (8) is proportional 
to the classical Weyl tensor 

Wxy``~,(S,,xy - 0) = 6 q y  ,o (25) 

and so 

A(r)abc(S,,xy -= 0) = 24Cbcaz; ~ = 0 (26) 

This system of equations is identical to (3), because the left and the right 
duals of the Weyl tensor are equal to each other. 

Instead of requiring that Gab (19) be zero, we can now require, thanks 
to (24) and (23), that the combination 

Hat, = Gab + �89 Aabc; d + Abac; d)g cd 

+ �89 + A,,,a~S"oa)g ca (27) 

be zero. By inserting (22) into (27) we find 

Hab=(- �89 + X,,b +Uxa``oRxb~,~, +Uxb``vRx,~uo (28) 

An explicit calculation shows that Haog ab= O, so that (28) results in only 
nine independent complex equations. They split into nine real equations, 

H~oab = Wxa ,,,, ( Rxb `̀ o -- ~ Wxb``o) + Wxb``o ( R . . . .  - ~ Wx,~ uv) = 0 (29) 

and nine imaginary equations, 

n(i)ab = gab + Mxa uvRxo uv + MxbuoR . . . .  = 0 (30) 

For zero contortion, (29) becomes 

H(~)ab=6Cxauv(Qxbuv--Cxbuo)+6Cxb``v(O . . . .  -- Cxa``~) = 0  (31) 

which after the insertion of the explicit expression for Cxy ``o yields 

H(~)ab = 12 Cxa ,,bOx,, = 0 (32) 

which is equation (1) with ~" = 0. 
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Similarly, Ht~)~ b becomes for zero contortion 

H(i)a b ---- 3 [ -  2QktxaQmnxbllklmn d- Qmnxy (Q,,txyrl,,,.m + Qbtxv~, . . , , t )]  

= 3 [( - Qktxb + *Q~txb) Qm . . . .  + ( - Qktx .  + *Q~tx,,) Q,,,. xo] nkt,,,. 

(33) 

An expansion of the double dual gives 

*Q~,txbQ . . . .  ~klmn = QklxbQmn xa~Tkl .... + 2Qx, ,Q . . . .  ~l,,,,,,,b (34) 

Thus 

H~i),,b = 6Qxu(*Q~bx~ + *Q~axb) = 12Qx~*Qx,, .b = 12Qx~*c~a ~b = 0 

(35) 

which is equation (2). 
It has been shown by (Debney et al., 1978) that the system of equations 

(1), (2), and (3), have the same solutions as Einstein equations in vacuum, 
Q,b  = 0. The system of equations (32), (35), and (26) may allow more 
general solutions, because the restriction Q = 0 is not there any more. The 
system of equations (29), (30), and (24) may even have nontrivial solutions, 
which are regular everywhere thanks to additional ,degrees of freedom, 
offered by the components of the contortion tensor. The details of these 
considerations and more details of the calculations leading to the results of 
the present paper will be published separately. 

By combining (26) with (3), we get 

Cbc,,a: z:= = + Ck~a~Qkt,,,.. + Cbka~Qk~o~ + Cb~k~Qkao~ + CbcakQko 

- Ckca~Qt, oa ~ -- Coka~Qkca~ -- Cbck~Qk,,a~ -- Cb~akQk a (36) 

For sufficiently small curvatures, this is the wave equation for Weyl tensor. 
Although we now have new field equations, we can consider that 

Einstein equations for matter are still valid, but not as field equations. They 
can rather be considered as definition equation for the matter tensor in 
terms of the space-time curvature (Eddington and Schr~Sdinger interpreta- 
tion), that is 

Tik ~ Qik 1 - ~gikQ (37) 

rather than the other way around. As the equations (32) and (35) can also be 
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wri t ten  as 

I (Q~ .  - ~g~ .Q)Cx . .h  = T~ .C~ .  b = 0 (38) 

I * C  ~ ( O x ~ - ~ g x u a )  x ~b  T ~  Cxa~b = 0  (39) 

they can be  in te rpre ted  as descr ib ing  the coupl ing  be tween  the gravi ta t ing  
ma t t e r  and  the pure  grav i ta t iona l  field. 
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